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The pseudospectral method has under-used advantages in problems involving shocks and 
discontinuities. These emerge from superior accuracy in phase and group velocities as com- 
pared to finite difference schemes of all orders. Dispersion curves for finite difference schemes 
suggest that group velocity error typically outranks Gibbs’ error as a cause of numerical 
oscillation. A flux conservative form of the pseudospectral method is derived for compatibility 
with flux limiters used to preserve monotonicity. The resulting scheme gives high quality 
results in linear advection and shock formation/propagation examples. ‘(- I989 Academic Press, 

Inc. 

INTRODUCTION 

Spectral methods for inviscid flow problems involving shocks have been 
developed at a slower rate than for problems where discontinuities are absent. This 
has been recognized explicitly [l] and implicitly [2] in papers taking a broad view 
of the subject. It is the purpose of the present paper to show how the pseudo- 
spectral method [3] can be substituted for a finite difference scheme in flux 
corrected transport (FCT) calculations, and to show why the results are better. The 
FCT method [4, S] is effectively a local, nonlinear filter used to control numerical 
oscillations near shocks and steep gradients. 

The flux correction method used here employs the Zalesak flux limiter [S]. In 
this approach, two arbitrary schemes are cast in conservation form: one of high 
order (pseudospectral), and the other monotone (e.g., first order upwind). A “flux 
correction” filter effectively assigns a local weight factor to fluxes from each scheme. 
The method adopts the form of the high order scheme in smooth regions. In loca- 
tions where monotonicity could be violated by the high order scheme, weighting is 
shifted in favor of the low order fluxes. Comparisons made elsewhere with analytic 
solutions show that the accuracy of the overall method generally increases with the 
order of the high order scheme [6,7]. 

Zalesak carried out an FCT pseudospectral calculation [6 J for linear advection 
which gave results of higher quality than those from finite difference schemes up to 
sixteenth order in space. The method, however, was formulated in a fashion that 
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did not take advantage of fast Fourier transforms (FFTs). Taylor et al. [S] gave 
results of a pseudospectral shock calculation using FFT’s. They chose a Chebyshev 
polynomial expansion in space, appending the Boris-Book flux limiter [4] as a 
postprocessor to control oscillations at each time step. This involved adding global 
second order diffusion, followed by flux limited antidiffusion. Properties of the 
method itself were not discussed in that work, nor were the effects of wave propaga- 
tion through the nonuniform grid required for the Chebyshev expansion. This work 
takes a different approach to discretization and flux limiting and does take advan- 
tage of FFT’s. 

Depending on the physical problem under consideration, high order methods 
may have advantages over shock capturing methods of the Godunov type [9-Ill. 
These methods discretize variables into piecewise polynomial sections (allowing 
discontinuities between sections or subsections) and use gasdynamic Riemann 
solutions to advance a step in time. After the timestep, the solution is projected 
onto the original basis as input to the next timestep. These methods can yield 
accurate results for shocks, but their complexity increases greatly with order. In 
regions where the flow may be dominated by linear advection, these methods give 
results equivalent to those of low to moderate order finite differences. 

THE HIGH ORDER SCHEME: PSEUDOSPECTRAL 

We will work with a model problem for a scalar hyperbolic equation in one 
dimension: 

a,u + a,qqu) = 0. (1) 

This equation leads straight to the conservation of S u dx and to the preservation of 
monotonicity (extrema can be neither created nor enhanced). The method 
developed in this paper may be modified to include systems of equations by 
replacing 4(u) by the appropriate advective flux uu, and using suitable donor cell 
fluxes in Eq. (10) below. 

The pseudospectral method evaluates the x derivative in (1) by performing an 
FFT, then evaluating derivatives analytically before the inverse FFT. Let the finite 
difference grid be 

xi = j .13x, j= 1, 2, . . . . N, (2) 

and let 4 be represented in space by Fourier series: 

f$ = C J(k) exp( ikx). 
k 

We will assume periodic boundary conditions on all variables for simplicity. Other 
boundary conditions can, of course, be included at the expense of altering the 
selection of admissible modes. One can use the identity 

eikdr/2 _ e ik6r/2 

2i 
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to express the x derivative of (3) as 

One recognizes this as the difference between a function shifted forward half a grid 
cell and the same function shifted backward half a grid cell. This suggestive result 
leads directly to the conservative flux form given in (6) and (7) below. 

For the discretization of (1) in time, we will use the leapfrog trapezoidal scheme 
[12] with step 6t between time levels. This scheme can be thought of as a 
predictor-corrector with the predictor being a leapfrog step from time level n - 1 to 
a provisional level n + 1 * using spatial derivatives evaluated at level n. Then the 
provisional level n + 1* is averaged with n to yield a provisional level n + i*. The 
trapezoidal corrector is a step from IZ to n + 1 using spatial derivatives evaluated at 
n + i*. This provides second order accuracy in time, while damping the computa- 
tional mode (“odd-even” Nyquist frequency oscillations in space and/or time), 
which could interfere with the flux corrector used here. 

Employing (5) in the time-discretized equation (1) leads to the conservative flux 
form for the pseudospectral method: 

where superscripts indicate time level and 

(7) 

A flux form of this type seems to have been recognized only recently as a possible 
ingredient in a monotonicity preserving scheme [ 13, 143. The leapfrog trapezoidal 
ti’me advancement scheme used here is stable for Courant number 
& = 1 u &/6x 1 max d 2”‘/7t = 0.45, where u is the characteristic speed (see (9) below). 
For simple leapfrog advancement, the limit is l/rc. The k=O mode has been 
dropped from (7) for an important reason. Different additive constants in high and 
low order fluxes would lead to a meaningless bias in the flux correction process, 
which assigns a physical interpretation of intergridpoint transport to the difference 
between high and low order fluxes. We remove the spatial mean from the high 
order flux (7) by excluding k = 0, and from the low order flux by computing the 
average and subtracting it. 

THE Low ORDER SCHEME: MONOTONE UPWIND 

A convenient first order monotone scheme [7] for (1) is upwind differencing with 
the differencing direction defined by a variable 

wj+ l/2 = (4j+I-~ji)‘(vj+1-vv,)~ (8) 



416 B.E.MCDONALD 

whose sign is that of the characteristic speed u somewhere on the interval (vi, ui+ ,), 
where 

4 
u=&. 

We define first order fluxes 

(9) 

and remove the spatial average, 

f ,+I/2 +fj+ l/2- (f>. (lob) 

When equations are given without superscripts, it is understood that all variables 
are evaluated at the same time level. The removal of the mean value in (lob) has 
no effect on the low order update (1 1 ), but is necessary for compatibility with (7) 
in the flux correction process. A monotone first order update accounting for 
reversals in the sign of u is 

V : + ” = v: -.f;+ I/2 +fi"- 112. (11) 

This provisional update to time level n + 1’ is set aside for correction as described 
below. The above scheme is monotone for E < 4. This allowed Courant number 
is smaller by a factor of two than that for stability alone. The extra factor of 
two allows for monotonicity preservation when u is compressive at an extremum 
of u [7]. 

FLUX CORRECTION: A NONLINEAR FILTER 

The next step is to construct a set of “flux corrections” 

6f,n=:izz = F.;::/; -f.:+ 1/z (12) 

and filter them with a flux limiter to prevent creation or enhancement of extrema. 
For problems of higher than one dimension, flux limiters have been constructed [ 51 
which require auxiliary storage. In one dimension, however, it is sufficient to use 

df:Z$! -+s,+1,2 .max{O, minCT,+,,,6fJ'T;/:, S,,,/,.Cu:=:'-u:=:'), 
s,, 112. (0;' " -II;':')]}, (13) 

where 

S ,+ 112 =skn(6f~$J~), 
Ti+,,,=t[Si+,:2+sign(v:=,“-~:+“)]. 

(14) 
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This is similar to the Boris-Book flux limiter, but with the following differences. The 
flux correction Sf has been constructed as the difference between fluxes from two 
specified schemes, rather than the negative of a diffusive flux added to damp oscilla- 
tions. The factor T, + ,,* Sf J’z$ replaces 1 Sf J’:,$ 1 in the limiter of Ref. [ 11. This 
replacement requires that the correction to high order not decrease gradients 
locally; i.e., the flux correction should be of an antidiffusive nature everywhere. 

This form preserves monotonicity of v and results in total fluxes which are point- 
by-point intermediate between high and low order fluxes. The completed monotone 
pseudospectral update is then 

v:“=vr+“-~f~=:/2+$f:-tll,!22. (15) 

This approach to flux limiting recovers the high order fluxes [S] Fj+ ,,2 at all 
locations j + l/2 except where the high order scheme could violate monotonicity at 
j or j + 1. Thus spectral accuracy is retained in smooth regions. 

OSCILLATIONS:GIBBS' ERROR AND PHASE ERROR 

This section discusses properties of numerical schemes which have been 
recognized previously [15-171, but which have received little attention in the con- 
struction of flux limiters. Numerical oscillation is commonly attributed to Gibbs’ 
error; i.e., the tendency of a series representation to oscillate near a jump in nodal 
values. A stronger contributor to numerical oscillation in advection scheme results 
is discretization error in phase and group speed. Numerical oscillations from 
difference schemes of various orders are illustrated in Fig. 1. (This figure is the first 
part of a before-and-after pair, with Fig. 4 containing results after flux correction. 
The pseudospectral results in Fig. 4 are flux-corrected in exactly the same way as 
the finite difference results.) Linear advection examples are given for two profiles 
which reveal numerical artifacts in finite difference schemes: a discontinuous square 
wave and a semicircle. The square wave tests monotonicity preservation and reveals 
residual numerical diffusion in the rounding of the discontinuity. The semicircle is 
sensitive to terracing or oscillation in slope. 

A trademark of Gibbs’ error is that the width, rather than the amplitude of the 
oscillation, tends to zero as the number of retained frequencies increases. The width 
of the region of spurious oscillations in Fig. 1, however, increases with the order of 
the scheme. This is characteristic of group velocity error. Figure 2 gives a result 
more typical of Gibbs’ error. Here the linear advection example of Fig. le is carried 
much further in time with the pseudospectral method. A mild damping of the com- 
putational mode results from the leapfrog-trapezoidal time advancement scheme. As 
pointed out below, the pseudospectral method gives accurate phase speeds for all 
modes except the odd-even mode. Gradual removal of the small spectral interval 
where phase and group velocity errors are significant has exposed the underlying 
Gibbs’ error. 

581,82/2-12 
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FIG. 1. Passive scalar advection test without flux limiter. (a) Initial condition; (b) Second order 
spatial differencing after 30 timesteps at a Courant number of 0.1; (c) Fourth order; (d) Eighth order; 
(e) Pseudospectral. Solid lines: analytic solution; points: numerical results. 
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FIGURE 1 -Continued 

For the sake of illustration, Fig. 3 shows phase and group velocities for eight 
schemes of order 2 through 128 plus pseudospectral. Such high orders are included 
only to illustrate how much would be required of a finite difference scheme to 
challenge pseudospectral accuracy at high wavenumber. These curves are calculated 
to arbitrary order as follows. Consider the linear advection equation 

a,U = -dxu, (16) 

where c is constant. Assuming temporal and spatial variation ei(kx-o’) and 
replacing a, in (16) with a finite diffeence operator of a given order accuracy then 
gives o as a function of k 6x. (Temporal truncation error is omitted from this 
analysis.) For a stable scheme of even order, o is real. An expression for the 
numerical derivative of a function f(x) accurate to order 2M at a point x0 on an 
evenly spaced grid is [ 181 

Gf(xo)= 
6X 

f ftxi) -S(xO) 

i= -M#O xi-x0 j= g#o.i I+? 
(17) 
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FIGURE 3-Continued 

where x,, resides at the center of the 2M+ 1 point stencil (x-,, . . . . x,+,). Use of this 
result to calculate a dispersion curve from (16) leads to the following expressions 
for the phase velocities (18) and group velocities (19) for constant mesh spacing 6x. 

W sin nk 6x 
-= 
ck ,,=!M,o nk6x j;nJ’ 

(18) 

d,w -= 
c 2 cos nk 6x n f!-- (19) 

n= --M#O j+o,n J-n’ 
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FIG. 4. Results analogous to Fig. 1 after 800 steps including the flux limiter of Eq. (13). 
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FIGURE 4-Continued 

Figure 3 reflects that phase velocities from finite difference schemes are accurate 
for the well-resolved (low wavenumber) modes, but fall to zero at the odd-even 
mode. Then the best a real scheme can do is stay with the linear dispersion relation 
as long as possible before falling away. (In principle, a complex scheme could be 
constructed to retain phase information lost in time-advancing the oddeven 
mode.) Since the group velocity (i.e., the wave packet speed) is proportional to the 
slope of the dispersion curve o(k), information in the high wavenumber modes 
propagates in the wrong direction at a speed which increases with increasing order. 
This behavior is evident in Fig. 1. 

With the pseudospectral method, only the highest mode falls off the phase 
velocity curve, so that group velocities are accurate for all but the highest mode 
interval. The leapfrog-trapezoidal time advancement scheme used here contributes 
a mild damping to these modes, keeping results from being highly contaminated 
with the backward-running error seen in Fig. 1. Extension of the calculation of 
Fig. le from 30 to 800 timesteps with the pseudospectral method (Fig. 2) yields the 
low oscillation and high structure resolution levels one would hope for before 
applying a monotonicity filter. 

An interesting and little-realized fact can be gleaned from Fig. 3. Even when the 
finite difference order is one less than the number of grid points, errors still occur 
in the high wavenumber phase and group velocities, and the pseudospectral method 
stands unsurpassed. In this case, the polynomial representing the finite difference 
scheme passes through all the nodal values, and one might be tempted to think that 
this situation could not be improved. The resolution of this apparent paradox is 
that finite differences do not give exact results for differentiation of the sinusoid 
used in defining phase velocity, while the pseudospectral method does. 
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FIG. 5. Shock formation from Bergers” equation for an inverted parabolic profile initial condition, 
Solid line: analytic solution; crosses: PSF results. 
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FIGURE 5-Continued 

RESULTS WITH FLUX CORRECTION 

Linear Advection 

Figure 4 shows results analogous to those of Fig. 1 with a flux limiter of the form 
of (13) applied to finite difference methods of increasing order, including the scheme 
of (7)-(13). This latter combination will be designated PSF for pseudospectral flux 
correction. All tests use the leapfrog-trapezoidal time differencing scheme. Lacking 
the spurious oscillations of Fig. 2, Fig. 4 shows the kind of convergence with 
increasing order that one would hope to find in a well-behaved scheme. Numerical 
smoothing evident in the rounding and broadening of the step function profile 
decreases with order, even after the addition of the local diffusion implicit in the 
flux limiter. 

A more demanding test of the schemes than monotonicity preservation is their 
accuracy against the formation of terraces. These result from the tendency to form 
oscillations in slope. These slope oscillations could occur at low amplitude without 
invoking any local smoothing from the flux limiter. Only when they reach an 
amplitude large enough to cause artificial extrema, the flux limiter enters and 
effectively converts an individual artificial extremum to a plateau. A distribution of 
these plateaus appears as a terrace. The semicircle profile of Fig. 4 shows a 
decreasing tendency to form terraces as the order of the scheme increases. Both the 
amplitude and width of the terraces decrease with order. This is consistent with the 
view that increasing the order of the scheme moves to a higher wavenumber and 
narrows the spectral interval over which phase and group velocities are in error. 

Shock Formation 

Another revealing test of a scheme for hyperbolic problems is to follow the evolu- 
tion of a continuous profile subject to the inviscid Burgers’ equation into steepening 
and shock propagation. Many tests of contemporary shock following methods have 
been published, in which shocks are present in initial conditions. These tests may 
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FIG. 6. The test problem of Fig. 5 with 16th order linear filter of (20). 
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FIGURE 6-Continued 

not reveal artifacts which can occur in the continuously steepening case. 
Pathologies that can occur in steepening have been demonstrated elsewhere [7]. 

Figure 5 shows PSF results for shock formation and propagation as described by 
the inviscid Burgers’ equation, in comparison with the analytic solution. The shock 
front behavior is in excellent agreement with the analytic solution, while the back 
side of the shock is contaminated by an odd-even oscillation. This is substantially 
improved in Fig. 6 by the use of a high order (16th) linear filter. The filter consists 
of adding to (7) a flux 

D,n=;/-j= = - EA m’*- yu/“+ l - UJ), (20) 

where E is the maximum Courant number in the calculation, m = 16, and A is the 
normalized second difference operator, 

Au,= -~v,+,+$I,-$I-,. (21) 

The filter (20) is added to the high order flux (7) before the flux limiter is evoked, 
so that monotonicity of the total scheme is preserved. This form for the filter was 
found most satisfactory after experimenting with several more complicated forms. 

SUMMARY 

Gibbs’ error is often cited as the cause of numerical oscillation near discon- 
tinuities. It is likely, however, that finite difference phase error causes more artificial 
oscillation than Gibbs’ error. The pseudospectral method is capable of higher 
quality resolution of discontinuities than finite difference schemes because of its 
accuracy in phase and group velocities for spatial modes below the Nyquist 
frequency. Numerical oscillations in both value and slope are smaller with the 
pseudospectral method than with finite difference schemes. The pseudospectral 
method when cast in flux difference form (7) is compatible with monotonicity- 
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enforcing flux limiters developed for finite difference schemes. The resulting 
pseudospectral flux correction (PSF) method appears very attractive for problems 
involving discontinuities and shock formation. For passive advection of a 
discontinuity at a uniform speed, PSF controls oscillations in value and slope while 
maintaining structure details. For shock propagation, however, a high-order linear 
filter is desirable for controlling oscillations in slope behind the shock. Further 
work is needed on this feature of the scheme. 
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